Preprint #06-5 NORMAL APPROXIMATIONS FOR COMPUTING CONFIDENCE INTERVALS FOR LOG-LOCATION-SCALE DISTRIBUTION PROBABILITIES
نویسندگان
چکیده
Normal approximation confidence intervals are used in most commercial statistical package because they are easy to compute. However, the performance of such procedures could be poor when the sample size is not large or when there is heavy censoring. A transformation can be applied to avoid having confidence interval endpoints fall outside the parameter space and otherwise improves performance, but the degree of improvement (if any) depends on the chosen function. Some seemingly useful transformation functions will cause the estimated variance blow-up in extrapolation, which makes the performance poor. This article reviews statistical methods to construct confidence intervals for distribution probabilities based on a normal distribution approximation and studies the properties of these confidence interval procedures. Our results suggest that a normal approximation confidence interval procedure based on a studentized statistic, which we call the z-hat procedure, has desirable properties. We also illustrate how to apply the z-hat procedure to other functions of the parameters and in more general situations.
منابع مشابه
Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean
A Poisson distribution is well used as a standard model for analyzing count data. So the Poisson distribution parameter estimation is widely applied in practice. Providing accurate confidence intervals for the discrete distribution parameters is very difficult. So far, many asymptotic confidence intervals for the mean of Poisson distribution is provided. It is known that the coverag...
متن کاملBootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملNormal Approximations for Computing Confidence Intervals for Log-Location-Scale Distribution Probabilities
Normal approximation confidence intervals are used in most commercial statistical package because they are easy to compute. However, the performance of such procedures could be poor when the sample size is not large or when there is heavy censoring. A transformation can be applied to avoid having confidence interval endpoints fall outside the parameter space and otherwise improves performance, ...
متن کاملExponential Models: Approximations for Probabilities
Welch & Peers (1963) used a root-information prior to obtain posterior probabilities for a scalar parameter exponential model and showed that these Bayes probabilities had the confidence property to second order asymptotically. An important undercurrent of this indicates that the constant information reparameterization provides location model structure, for which the confidence property ...
متن کاملMonte Carlo Comparison of Approximate Tolerance Intervals for the Poisson Distribution
The problem of finding tolerance intervals receives very much attention of researchers and are widely used in various statistical fields, including biometry, economics, reliability analysis and quality control. Tolerance interval is a random interval that covers a specified proportion of the population with a specified confidence level. In this paper, we compare approximate tolerance interva...
متن کامل